Molecular and Cellular Pathobiology Inhibition of Cholinergic Signaling Causes Apoptosis in Human Bronchioalveolar Carcinoma
نویسندگان
چکیده
Recent case-controlled clinical studies show that bronchioalveolar carcinomas (BAC) are correlated with smoking. Nicotine, the addictive component of cigarettes, accelerates cell proliferation through nicotinic acetylcholine receptors (nAChR). In this study, we show that human BACs produce acetylcholine (ACh) and contain several cholinergic factors including acetylcholinesterase (AChE), choline acetyltransferase (ChAT), choline transporter 1 (CHT1, SLC5A7), vesicular acetylcholine transporter (VAChT, SLC18A3), and nACh receptors (AChRs, CHRNAs). Nicotine increased the production of ACh in human BACs, and ACh acts as a growth factor for these cells. Nicotine-induced ACh production was mediated by a7-, a3b2-, and b3-nAChRs, ChATandVAChTpathways.Weobserved that nicotine upregulatedChAT andVAChT. Therefore, we conjectured that VAChT antagonists, such as vesamicol, may suppress the growth of human BACs. Vesamicol induced potent apoptosis of human BACs in cell culture and nude mice models. Vesamicol did not have any effect on EGF or insulin-like growth factor-II–induced growth of human BACs. siRNA-mediated attenuation of VAChT reversed the apoptotic activity of vesamicol. We also observed that vesamicol inhibited Akt phosphorylation during cell death and that overexpression of constitutively active Akt reversed the apoptotic activity of vesamicol. Taken together, our results suggested that disruption of nicotine-induced cholinergic signaling by agents such as vesamicol may have applications in BAC therapy. Cancer Res; 73(4); 1328–39. 2012 AACR.
منابع مشابه
Inhibition of cholinergic signaling causes apoptosis in human bronchioalveolar carcinoma.
Recent case-controlled clinical studies show that bronchioalveolar carcinomas (BAC) are correlated with smoking. Nicotine, the addictive component of cigarettes, accelerates cell proliferation through nicotinic acetylcholine receptors (nAChR). In this study, we show that human BACs produce acetylcholine (ACh) and contain several cholinergic factors including acetylcholinesterase (AChE), choline...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملQuercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer ac...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013